Outline - History of climate change at SPU - Current approach to addressing climate change - Planning for Future Water Supply Needs - Broader Water Resources Planning Efforts at SPU # High level climate change planning in 2000 - Focused on creating a storyline - Used GCM data - Not a prediction - Did not assign probability of occurrence Train of models heading into the Cascade Mountains of Uncertainty! Acknowledgement: Alan Chinn (retired) ## Structured story lines for data selection #### A Five-Step Method for Seattle Public Utility Water Planners | Step | Icon | Choices | Information | Uncertainties/Limitations | Updates | |---|------|---|---|---------------------------|--| | Step 1. Choose Your
Favorite IPCC CO2
Emissions Forcing
Scenario | | There are 40 different
CO2 Emission Scenarios
developed for the IPCC
Third Assessment Report | These are "What-if"
scenarios, or "Story Lines"
created for the IPCC,
Results for most scenarios
are not available | ? | IPCC plans to revise the
CO2 Emissions Scenarios
for the IPCC Fourth
Assessment Report (2007) | | Step 2. Choose Your
Favorite Earth Simulation
Model | | There are 34 different
Earth Simulation Models
assessed in the IPCC Third
Assessment Report | These models are owned
and operated by major
institutions around the
world and many require
running on the world's
fastest supercomputers,
Results for most models
are not available | ? | Many of the Earth
Simulation Models are
continually being revised
and improved by major
institutions around the
world | | Step 3. Choose Your
Favorite Downscaling
Method | Q | There are 10 different
downscaling options
developed by the UW | UW has 9 different
statistical method options,
UW has 1 Regional
Climate Model method
using MM5 Model | ? | UW Regional Climate
Model method using MM5
Model is currently
underway for a PNW
study. Seattle City Light
is participating | | Step 4. Choose Your
Favorite Local Scale
Watershed Simulation
Model | | There are 2 different local
scale watershed models for
the Cedar and Tolt
Watersheds | UW has the PRISM
DHSVM Model,
SPU has the SEAFM
Model | ? | SPU is revising and
improving its SEAFM
Model | | Step 5. Choose Your
Favorite Water Resources
Management Simulation
Model | | There are 2 different water
resources management
simulation models for the
Cedar and Tolt reservoir
and river systems | UW has the CRYSTAL
Model,
SPU has the CUE Model | ? | SPU is reviewing its CUE
Model for possible
revisions and
improvements | Acknowledgement: Alan Chinn (retired) # Next system update added more storylines 2075 2025 Warmer Scenario Echam5_A2 2050 Warmest Scenario IPSL_CM4_A2 Change in Water Supply Historic 2000 Warm Scenario GISS ER B1 ## 2007 Analysis of Major Water Supply Options ### **New Water Supply Planning Model** #### Considered: - Cost and water supply - Environmental impact - Regulatory impact - Water quality - Ease of development - Operational reliability #### Recommended an update every 7 years # More analyses = more variability - 2019 Climate Change analysis used data from 20 GCMs - Science improved the data for use at regional scale (PUMA) - Improved in-house modeling capacity # Shift in 2019 Supply Planning: Focus on impacts - Results from 2007 study: false precision - Previous studies focused on calculated reductions in supply; Shift to trends in shortfalls - What are our system vulnerabilities - How will our system function under multiple future scenarios # Anticipated regional climate change impacts ## **Increased Temperatures** - Less winter snowpack - Earlier snowmelt - Dry/wet years more extreme - Wetter winters, drier summers ## More variable precipitation Climate change vulnerabilities for current system - Change in timing of reservoir drawdown - Drawdown begins earlier - Later return of fall rains - Greater draw from current water supply storage - Longer drawdown season - Higher water demand - More variable precipitation - Decreased river flows (reservoir inflows, instream flows) - Later return of fall rain # **Current Water Supply Outlook: Good** ## 2019 Water System Plan - Current supply is sufficient for forecasted needs - Presented future supply sources to be more resilient to future vulnerabilities # Transition to adaptive supply planning - Future water supply is not fixed - Climate change will impact supply directly and indirectly - Proactively plan for uncertainty Scenario planning: adaptive and resilient #### The Cone of Uncertainty # The Scenario Planning Process Develop the Core Question Identify Key Uncertainties Create the Scenarios Matrix **Explore Future Conditions** Prioritize Adaptive Strategies # **Future Water Supply Alternatives Project** ## **Traditional Water Supply Projects** - A North Fork Tolt Diversion - B South Fork Tolt Deeper Drawdown - C1 Cedar Permanent Drawdown - C2 Cedar High Dam - D Lake Youngs Deeper Drawdown - E Snoqualmie Aquifer Project # **Long-Range Planning Projects** ## **Conclusion** - Water supply planning will not get easier - SPU has a long history of data-driven planning - Entering a new era of adaptive planning for water supply at SPU